Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Multi-Dimensional Benefit Assessment of Automated Mobility Platforms (AMP) for Large Facilities: Mobility, Energy, Equity, and Facility Management & Design

2023-09-05
2023-01-1512
The goal of the automated mobility platforms (AMPs) initiative is to raise the bar of service regarding equity and sustainability for public mobility systems that are crucial to large facilities, and doing so using electrified, energy efficient technology. Using airports as an example, the rapid growth in air travel demand has led to facility expansions and congested terminals, which directly impacts equity (e.g., increased challenges for Passengers with Reduced Mobility [PRMs]) and sustainability—both of which are important metrics often overlooked during the engineering design process.
Technical Paper

Analysis and Testing of Optimal Power Control Strategy for NASA Moon Base Interconnected DC Microgrid System

2023-09-05
2023-01-1508
As a part of NASA’s efforts in space, options are being examined for an Artemis moon base project to be deployed. This project requires a system of interconnected, but separate, DC microgrids for habitation, mining, and fuel processing. This in-place use of power resources is called in-situ resource utilization (ISRU). These microgrids are to be separated by 9-12 km and each contains a photovoltaic (PV) source, energy storage systems (ESS), and a variety of loads, separated by level of criticality in operation. The separate microgrids need to be able to transfer power between themselves in cases where there are generation shortfall, faults, or other failures in order to keep more critical loads running and ensure safety of personnel and the success of mission goals. In this work, a 2 grid microgrid system is analyzed involving a habitation unit and a mining unit separated by a tie line.
Technical Paper

Development and Implementation of SAE DC Charging Digital Communication for Plug-in Electric Vehicle DC Charging

2013-04-08
2013-01-1188
This paper outlines the development and progress of implementing the SAE J2931, J2847/2 and J1772 communication standards to accomplish off-board DC charging. Communication between the off-board DC Electric Vehicle Supply Equipment (EVSE) and Plug-in Electric Vehicle (PEV) occurs on the pilot wire of the SAE J1772 connector via HomePlug Green PHY power line communication (PLC). An Electric Vehicle Communication Controller (EVCC) was developed to interface with the PEV's Battery Energy Control Module (BECM). A Supply Equipment Communication Controller (SECC) was also developed to interface with the DC EVSE's Power Control Module (PCM). Firmware was developed to implement the SAE J2931/1 communication stack, which is harmonized with the ISO/IEC DIS 15118-2 and DIN 70121 standards for DC charging communication.
Technical Paper

High-Fidelity Heavy-Duty Vehicle Modeling Using Sparse Telematics Data

2022-03-29
2022-01-0527
Heavy-duty commercial vehicles consume a significant amount of energy due to their large size and mass, directly leading to vehicle operators prioritizing energy efficiency to reduce operational costs and comply with environmental regulations. One tool that can be used for the evaluation of energy efficiency in heavy-duty vehicles is the evaluation of energy efficiency using vehicle modeling and simulation. Simulation provides a path for energy efficiency improvement by allowing rapid experimentation of different vehicle characteristics on fuel consumption without the need for costly physical prototyping. The research presented in this paper focuses on using real-world, sparsely sampled telematics data from a large fleet of heavy-duty vehicles to create high-fidelity models for simulation. Samples in the telematics dataset are collected sporadically, resulting in sparse data with an infrequent and irregular sampling rate.
Journal Article

Cybersecurity Vulnerabilities for Off-Board Commercial Vehicle Diagnostics

2023-04-11
2023-01-0040
The lack of inherent security controls makes traditional Controller Area Network (CAN) buses vulnerable to Machine-In-The-Middle (MitM) cybersecurity attacks. Conventional vehicular MitM attacks involve tampering with the hardware to directly manipulate CAN bus traffic. We show, however, that MitM attacks can be realized without direct tampering of any CAN hardware. Our demonstration leverages how diagnostic applications based on RP1210 are vulnerable to Machine-In-The-Middle attacks. Test results show SAE J1939 communications, including single frame and multi-framed broadcast and on-request messages, are susceptible to data manipulation attacks where a shim DLL is used as a Machine-In-The-Middle. The demonstration shows these attacks can manipulate data that may mislead vehicle operators into taking the wrong actions.
Technical Paper

Impact of Hydrogen on the Ignition and Combustion Behavior Diesel Sprays in a Dual Fuel, Diesel-Piloted, Premixed Hydrogen Engine

2023-08-28
2023-24-0061
Renewably sourced hydrogen is seen as promising sustainable carbon-free alternative to conventional fossil fuels for use in hard to decarbonize sectors. As the hydrogen supply builds up, dual-fuel hydrogen-diesel engines have a particular advantage of fuel flexibility as they can operate only on diesel fuel in case of supply shortages, in addition to the simplicity of engine modification. The dual-fuel compression ignition strategy initiates combustion of hydrogen using short pilot-injections of diesel fuel into the combustion chamber. In the context of such engine combustion process, the impact of hydrogen addition on the ignition and combustion behavior of a pilot diesel-spray is investigated in a heavy-duty, single-cylinder, optical engine. To this end, the spatial and temporal evolution of two-stage autoignition of a diesel-fuel surrogate, n-heptane, injected into a premixed charge of hydrogen and air is studied using optical diagnostics.
Journal Article

On-Track Demonstration of Automated Eco-Driving Control for an Electric Vehicle

2023-04-11
2023-01-0221
This paper presents the energy savings of an automated driving control applied to an electric vehicle based on the on-track testing results. The control is a universal speed planner that analytically solves the eco-driving optimal control problem, within a receding horizon framework and coupled with trajectory tracking lower-level controls. The automated eco-driving control can take advantage of signal phase and timing (SPaT) provided by approaching traffic lights via vehicle-to-infrastructure (V2I) communications. At each time step, the controller calculates the accelerator and brake pedal position (APP/BPP) based on the current state of the vehicle and the current and future information about the surrounding environment (e.g., speed limits, traffic light phase).
Technical Paper

Investigating molecular decomposition via high-speed laser-induced Rayleigh scattering

2023-09-29
2023-32-0118
Molecular decomposition is a key chemical process in combustion systems. Particularly, the spatio-temporal information related to a fuel’s molecular breakdown is of high-importance regarding the development of combustion models and more specifically about chemical kinetic mechanisms. Most experiments rely on a variety of ultraviolet or infrared techniques to monitor the fuel breakdown process in 0-D type experiments such as those performed in shock-tubes or rapid compression machines. While the information provided by these experiments is necessary to develop and adjust kinetic mechanisms, they fail to provide the necessary data for applied combustion models to be predictive regarding the fuel’s molecular breakdown. In this work, we investigated the molecular decomposition of a fuel by applying high-speed planar laser Rayleigh scattering (PLRS).
Book

Lithium Ion Batteries in Electric Drive Vehicles

2016-05-16
This research focuses on the technical issues that are critical to the adoption of high-energy-producing lithium Ion batteries. In addition to high energy density / high power density, this publication considers performance requirements that are necessary to assure lithium ion technology as the battery format of choice for electrified vehicles. Presentation of prime topics includes: • Long calendar life (greater than 10 years) • Sufficient cycle life • Reliable operation under hot and cold temperatures • Safe performance under extreme conditions • End-of-life recycling To achieve aggressive fuel economy standards, carmakers are developing technologies to reduce fuel consumption, including hybridization and electrification. Cost and affordability factors will be determined by these relevant technical issues which will provide for the successful implementation of lithium ion batteries for application in future generations of electrified vehicles.
Technical Paper

Implementing Ordinary Differential Equation Solvers in Rust Programming Language for Modeling Vehicle Powertrain Systems

2024-04-09
2024-01-2148
Efficient and accurate ordinary differential equation (ODE) solvers are necessary for powertrain and vehicle dynamics modeling. However, current commercial ODE solvers can be financially prohibitive, leading to a need for accessible, effective, open-source ODE solvers designed for powertrain modeling. Rust is a compiled programming language that has the potential to be used for fast and easy-to-use powertrain models, given its exceptional computational performance, robust package ecosystem, and short time required for modelers to become proficient. However, of the three commonly used (>3,000 downloads) packages in Rust with ODE solver capabilities, only one has more than four numerical methods implemented, and none are designed specifically for modeling physical systems. Therefore, the goal of the Differential Equation System Solver (DESS) was to implement accurate ODE solvers in Rust designed for the component-based problems often seen in powertrain modeling.
Technical Paper

Analyzing the Expense: Cost Modeling for State-of-the-Art Electric Vehicle Battery Packs

2024-04-09
2024-01-2202
The Battery Performance and Cost Model (BatPaC), developed by Argonne National Laboratory, is a versatile tool designed for lithium-ion battery (LIB) pack engineering. It accommodates user-defined specifications, generating detailed bill-of-materials calculations and insights into cell dimensions and pack characteristics. Pre-loaded with default data sets, BatPaC aids in estimating production costs for battery packs produced at scale (5 to 50 GWh annually). Acknowledging inherent uncertainties in parameters, the tool remains accessible and valuable for designers and engineers. BatPaC plays a crucial role in National Highway Transportation Traffic Safety Administration (NHTSA) regulatory assessments, providing estimated battery pack manufacturing costs and weight metrics for electric vehicles. Integrated with Argonne's Autonomie simulations, BatPaC streamlines large-scale processes, replacing traditional models with lookup tables.
Technical Paper

Quantifying the Costs of Charger Availability Uncertainty for Residents of Multi-Unit Dwellings

2024-04-09
2024-01-2034
Even when charging at the highest rates currently available, Electric Vehicles (EVs) add range at substantially lower rates than Internal Combustion Engine Vehicles (ICVs) do while fueling. In addition, DC charging comes at a cost premium and leads to accelerated battery degradation. EV users able to rely on AC charging during long dwells at home or work may experience cost and time savings relative to ICV users with similar driving patterns. However, EV users unable to charge during long dwells will face higher charging costs and higher dedicated charging time. An important question is how occupants of Multi-Unit Dwellings (MUDs), which provide some AC Electric Vehicle Supply Infrastructure (EVSE) but not enough for all cars to charge at once, will be effected. In this paper the authors’ previously published method for quantifying EV user inconvenience due to charging is extended to deal with stochastic charger availability.
Technical Paper

Energy Savings Impact of Eco-Driving Control Based on Powertrain Characteristics in Connected and Automated Vehicles: On-Track Demonstrations

2024-04-09
2024-01-2606
This research investigates the energy savings achieved through eco-driving controls in connected and automated vehicles (CAVs), with a specific focus on the influence of powertrain characteristics. Eco-driving strategies have emerged as a promising approach to enhance efficiency and reduce environmental impact in CAVs. However, uncertainty remains about how the optimal strategy developed for a specific CAV applies to CAVs with different powertrain technologies, particularly concerning energy aspects. To address this gap, on-track demonstrations were conducted using a Chrysler Pacifica CAV equipped with an internal combustion engine (ICE), advanced sensors, and vehicle-to-infrastructure (V2I) communication systems, compared with another CAV, a previously studied Chevrolet Bolt electric vehicle (EV) equipped with an electric motor and battery.
Technical Paper

Trucking Forward: Intrusion Detection for SAE J1708/J1587 Networks in Heavy-Duty Vehicles

2024-04-09
2024-01-2805
Automotive researchers and industry experts have extensively documented vulnerabilities arising from unauthorized in-vehicle communication through academic research, industry investigations, sponsored events, and learnings from real-world attacks. While current cybersecurity endeavors in the heavy-duty (HD) vehicle space focus on securing conventional communication technologies such as the controller area network (CAN), there is a notable deficiency in defensive research concerning legacy technologies, particularly those utilized between trucks and trailers. In fact, state-of-the-art attacks on these systems have only come to public attention through official disclosures and public presentations as recently as 2020. To address these risks, this paper introduces a system-wide security concept called Legacy Intrusion Detection System (LIDS) for heavy-duty vehicle applications utilizing the SAE J1708/J1587 protocol stack.
Journal Article

Optical Investigation of Mixture Formation in a Hydrogen-Fueled Heavy-Duty Engine with Direct-Injection

2023-04-11
2023-01-0240
Mixture formation in a hydrogen-fueled heavy-duty engine with direct injection and a nearly-quiescent top-hat combustion chamber was investigated using laser-induced fluorescence imaging, with 1,4-difluorobenzene serving as a fluorescent tracer seeded into hydrogen. The engine was motored at 1200 rpm, 1.0 bar intake pressure, and 335 K intake temperature. An outward opening medium-pressure hollow-cone injector was operated at two different injection pressures and five different injection timings from early injection during the intake stroke to late injection towards the end of compression stroke. Fuel fumigation upstream of the intake provided a well-mixed reference case for image calibration. This paper presents the evolution of in-cylinder equivalence ratio distribution evaluated during the injection event itself for the cylinder-axis plane and during the compression stroke at different positions of the light sheet within the swirl plane.
Technical Paper

Analytical Calculation of the Critical Speed of a Driveshaft

2005-05-16
2005-01-2310
Determination of the critical speed of a driveshaft is critical for development and validation of its design for use in a vehicle because of its destructive effects. Typical calculations to determine critical speed are either over simplistic and not very accurate or very complicated requiring CAE software and capabilities. An analytical five-section non-prismatic beam model was developed to fill in this gap. The model was developed to compute the critical speed in a worksheet and proven to be as or more accurate as utilizing FEA methods. The model worksheet calculates the critical speed for one-piece conventional driveshafts and adapted for Visteon's Slip-In-Tube (SIT) driveshafts.
Technical Paper

Diesel Particulate Filter Durability Performance Comparison Using Metals Doped B20 vs. Conventional Diesel Part II: Chemical and Microscopic Characterization of Aged DPFs

2023-04-11
2023-01-0296
This project’s objective was to generate experimental data to evaluate the impact of metals doped B20 on diesel particle filter (DPF) ash loading and performance compared to that of conventional petrodiesel. The effect of metals doped B20 vs. conventional diesel on a DPF was quantified in a laboratory controlled accelerated ash loading study. The ash loading was conducted on two DPFs – one using ULSD fuel and the other on B20 containing metals dopants equivalent to 4 ppm B100 total metals. Engine oil consumption and B20 metals levels were accelerated by a factor of 5, with DPFs loaded to 30 g/L of ash. Details of the ash loading experiment and on-engine DPF performance evaluations are presented in the companion paper (Part I). The DPFs were cleaned, and ash samples were taken from the cleaned material. X-ray Fluorescence (XRF), X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Diffraction (XRD) were conducted on the ash samples.
Technical Paper

Thermal Evaluation of Toyota Prius Battery Pack

2002-06-03
2002-01-1962
As part of a U.S. Department of Energy supported study, the National Renewable Energy Laboratory has benchmarked a Toyota Prius hybrid electric vehicle from three aspects: system analysis, auxiliary loads, and battery pack thermal performance. This paper focuses on the testing of the battery back out of the vehicle. More recent in-vehicle dynamometer tests have confirmed these out-of-vehicle tests. Our purpose was to understand how the batteries were packaged and performed from a thermal perspective. The Prius NiMH battery pack was tested at various temperatures (0°C, 25°C, and 40°C) and under driving cycles (HWFET, FTP, and US06). The airflow through the pack was also analyzed. Overall, we found that the U.S. Prius battery pack thermal management system incorporates interesting features and performs well under tested conditions.
X